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Measuring the Precision of Genetic Parameters by
a Simulation Technique

D.D. Rodda, L.R. Schaeffer, K. Mullen and G.W. Friars
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Summary. Approximate standard errors of genetic parameter estimates were obtained using a simulation tech-
nique and approximation formulae for a simple statistical model. The similarity of the corresponding estimates
of standard errors from the two methods indicated that the simulation technique may be useful for estimating the
precision of genetic parameter estimates for complex models or unbalanced population structures where approxi
mation formulae do not apply. The method of generating simulation populations in the computer is outlined, and a

technique of setting approximate confidence limits to heritability estimates is described.
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Introduction

Several attempts have been made to provide approxi-
mate formulae for the standard errors of heritability
and genetic correlation estimates derived from vari-
ance and covariance components (e.g. Dickerson
1960; Robertson 1959; Grossman and Norton 1974)
for a few limited hierarchical statistical models,
sometimes with very restrictive assumptions. How-
ever, there are no general formulae that are appli-
cable to the many possible models or combinations
of circumstances.

A simulation technique was used by Van Vleck
and Henderson (1961) and Shook and Barr (1968) as
an empirical check on the approximation formulae of
Reeve (1955) and Tallis (1959) for the sampling vari-
ance of genetic correlation estimates. In this study,
simulation was carried out to check the approximate
standard errors from formulae of genetic parameter
estimates of egg composition traits in a study by Roda,,
Friars, Gavoraand Merritt (1977) from 998 progeny
distributed over 229 dams and 56 sires. The experiment
was designed to obtain 5 progeny from each of the 4
sire-dam families, but in all cases a minimum of 17
progeny per sire was maintained by the addition of a
fifth family, if necessary. Thus, the data were very
close to being equal number subclasses. A computer
was used to generate many simulated populations of

observations from the parameters estimated from the

original experimental observations. Subsequently,
parameter estimates were calculated from the simu-
lated populations, their distribution was examined,

and standard errors calculated.

Experimental Method

Estimation of heritabilities and genetic correlations

Sire, dam and progeny variance components were
estimated by Henderson's Method 1 (1953) for egg
composition and egg production traits using the nested
model:
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where yijk is the observation on the kth progeny
within the j©' dam within

th

the i sire;

u is a constant common to all observations;
s., d.,

i’ 7ij
dams and progeny with zero means and variances

02, dg, and c}z) respectively.

and pijk refer to random effects of sires,

To estimate the covariance components between traits
A and B, a new trait, trait C was formed by sum-
ming values of traits A and B for each observation.
Variance components for trait C were estimated,

and covariance components between traits A and B
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were ob;:ainezd from tl;e identity Cov , b= (cé- ci- 0123)/2
were d,, og and o are variance components for
traits, A, B and C respectively. Sire half-sib and full-
sib heritabilities and genetic correlations were esti-
mated from these variance and covariance component
estimates.

The approximate standard errors of the heritabi-
lity estimates were estimated using the formulae

reported by Dickerson (1960) as simplified by Becker

(1967):
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where SHS denotes sire half-sib and FS denotes full-
sib.

The sampling variances and covariances of the
variance component estimates in the numerators of
the above formulae were estimated from the exact
formulae given by Searle (1971), under the assump-
tion that the effects in the model are normally distri-
buted, and are exact only for specified values of the
variances which are unknown.

The formula of Robertson (1959) was used to
estimate the standard errors of genetic correlation
estimates. This formula assumes equal family sizes,

and equal and known heritability values of the traits.

Formation of simulated populations

The assumptions required to form simulated popula-
tions were as follows:

(a) the random effects in the model were nor-
mally distributed;

(b) the estimates of variances and covariances
due to sires, dams and progeny derived from the ex-
perimental data were the true population parameters.

The method of obtaining a multinormally distri-
buted observation vector of q traits described by
Hocking and Smith (1967) is outlined below.

(a) Form a q X q symmetric matrix V of vari-
ances and covariances for each random effect in the

model (i.e. Vo Vg Yp).
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Fig.1. Frequency distributions of (a) sire-half-sib
and (b) full-sib hertability estimates for albumen
percentage-solids from 400 simulated populations

(b) For each V matrix, form a corresponding

g X q lower triangular T matrix, such that TT'=V.
Let t..,
1)
tively, then

vij represent elements of T and V respec-

i-1
t (g>i) ={v.-Y t.t. |/t
gi{8 >0 = | Vg Z e |/t
k=1
(g=1,0.0,q,(i=1,...,8)).

(c) Using a random normal deviate generator,
form a vector w of q random normal deviates with
E(w) =0 and Var(w) =1, (i.e. zero mean and
unit variance).

(d) Postmultiply T by w to form u, whichis a
multinormally distributed vector of q effects with
E(u) =0 and Var (E) = V. The vector u is now a
vector of simulated effects found in the model. The
data from the original experiment were sorted pro-
geny within dams and dams within sires. Then, taking
each progeny in order, a vector Bp of effects was
generated for each progeny, a vector u d for each new
dam and a vector Eg for each new sire, and thethree
vectors summed to form the observation vector for
q traits, just as in the statistical model:

yijk S+ 4 dij + pijk'
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Fig.2. Relationship between heritability estimates
and their standard errors using (a) approximate for-
mulae and (b) the simulation technique

Standard errors for each trait are joined by a verti-
cal line

Without loss of generality, u was set equal to zero.
The design for the simulated observations was there-
fore identical to that in the original data.

When the simulated population was complete, gen-
etic parameters were estimated by the same statis-
tical analysis as the original experimental data. The
expectations of sums of squares were identical for
each simulated sample, and so it was unnecessary to
recalculate them for each sample. This procedure was
repeated 200 or 400 times, providing a frequency dis-
tribution of estimates for each genetic parameter
(example, Fig.1), and standard deviations were esti-
mated. The points beyond which the upper and lower
10 % of the distribution of estimates fell are known
as estimates of the 80 % tolerance limits for the po-

pulation.

Interpretation of results from the simulation tech-

nique

The variance of heritability estimates is found from
the distribution of ﬁz , an estimate of h2, which de-
pends on true (unknown) values of hz, the number of
sires, dams, and progeny, and the method of estima-
tion. For a given design pattern of sires, dams and
progeny and a method of estimation, the simulation
method provides an approximation to the true sample
variance of flz for each fixed hz. The standard devi-
ation (s.e. s) of the distribution is an estimate of the

true standard error of ﬁz.
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Fig.3. Graph for obtaining 80 4 Tolerance Limits for
heritability estimates for the specific population struc~
ture and method of estimation used to derive esti-
mates

If the assumed value of h‘2 used to simulate the
populations was close to the unknown true value of h2
for that trait, then s.e.g is likely to be close to the
true standard error of hZ. The assumption is made
that small differences between the assumed and true
value of h2 do not greatly change S.e. . A similar

assumption is made for genetic correlation estimates.

Results

Heritability estimates and standard errors
The regression of s.e.  on h2 was small for half-sib
heritability estimates and almost zero for full-sib es-
timates, suggesting that the values for s.e. g Were
good approximations of the standard errors of esti-
mates of the unknown heritabilities. The standard er-
ror (s.e.f) calculated from the modified Dickerson's
formula were slightly larger, (Fig.2) but were other-
wise quite consistent with those from the simulation
study.

The 80 % tolerance limits of the half-sib heritability
estimates were plotted (Fig.3) against the parameter
values on which the simulations were based. Regres-
sion lines were fitted to upper and lower limits.

When an estimate of heritability is available, 80 %
confidence limits of the true heritability can be found
by constructing a horizontal line through the value of
the estimate on the vertical axis; this line will inter-

sect the two regressions at points which may be read
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Fig.4. Standard errors of sire-half-sib genetic cor-
relation estimates from approximate formulae (white
circles) and from simulation (black circles)

Estimates involving egg laying intensity are marked
with an "'L"

off on the horizontal axis. These two points are the ap-
proximate 80 % confidence limits for the estimate ( Mood
et al. 1974) if the regressions are correctly assumed
to be linear. For example, the confidence limits on
the heritability estimate of 0.37 for egg weight were
0.22 and 0.58. Better estimates of the slopes of the
regression lines would have been obtained had some
"'artificial' traits been simulated with h2 ranging from
0.00 to 1.00 in steps of 0.10. The graph in Fig.3 can
only be used for the particular population size, struc-
ture, and method of estimation from which it was de-
rived. That is, a design with 56 sires, each mated to
4 or 5 dams giving rise to 4 or 5 progeny per mating

for a total of 998 observations.

Genetic correlations

The standard errors of sire half-sib genetic corre-
lation estimates calculated from the approximate
formula of Robertson (1959) and from the simulation
study showed good agreement (Fig.4) with four ob-
vious exceptions. These exceptions apply to correla-
tions involving egg laying intensity which had a low
heritability (0.07). Those four cases seriously vio-
lated two of the assumptions on which the formula
was based: (i) the heritabilities were far from equal
0.07 v 0.55; 0.07 v 0.45; 0.07 v 0.40; 0.07 v. 0.58);
and (ii) the estimate of the heritability of laying in-
tensity had a comparatively large standard error
(s.e.S = 0.07) relative to the heritability value. In

the remainder of the cases, the estimates were not
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greatly dissimilar (lowest 0.37; highest 0.58) and
were fairly precisely estimated (standard errors of
estimates were around 0.14). In all cases the as-
sumption of equal family size was not greatly violated.
Fig.4 suggests a dependence between the value of
the correlation and its standard error. An overesti-
mate of the true genetic correlation would lead to an
underestimate of the true standard error and vice

versa.

Discussion

The approximation formulae gave good estimates of
the standard errors of heritability estimates because
it can be shown that the numerator terms in the for-
mulae are the actual standard errors of the estimates
of additive genetic variance. The approximation for-
mula assumes the denominator is a constant, but the
the correct value of the standard error of heritabili-
ties depends on the sampling variation of the denomi-
ator and its correlation with the numerator. The for-
mulae make no other assumptions except that the
effects are normally distributed. For genetic corre-
lations, the simulation technique produced estimates
of standard errors which were quite close to the val-
ues obtained by the formula of Robertson (1959) when
the assumptions were not seriously violated. The
close agreement between standard error estimates
by the approximation formulae and simulation proce-
dure could be due to the nearly equal subclass num-
bers in this study. Since the approximation formulae
assume equal subclass numbers, the simulation pro-
cedure might be expected to yield better estimates

of standard errors than the formulae under drasti-
cally unequal subclass number situations.

The simulation technique appears to be a useful
and easy method of finding approximate standard er-
rors of heritabilities and genetic correlations, and
can also be used to obtain approximate confidence
limits around heritability estimates. Its great poten-
tial lies in that it is not limited to particular statisti-
cal models, nor to conditions of equal family sizes.
For mixed models, the fixed effects can be assigned
arbitrary values, the easiest are zero, and the sim-
ulated data can be analyzed exactly as the original

data. If the distribution of effects is not normal, then
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samples may be drawn from the appropriate distri-
bution if it is known. Although the simulation techni-
que may be laborius in terms of computer program
development, it offers a general solution of the prob-
lem of estimating the sampling variation of genetic

parameter estimates.

Acknowledgement

The authors wishes to thank Dr. C.R. Henderson for
suggesting the simulation technique, the Animal Re-
search Institute, Agriculture Canada, Ottawa for sup-
plying some of the data used, 4nd the Ontario Ministry
of Agriculture and Food for financial support.

Literature

Becker, W.A.: A manual of procedures in quantita-
tive genetics. 2nd ed. 130 pp. Pullman: Washing-
ton State Univ. press 1967

Dickerson, G.E.: Techniques for research inquanti-
tative animal genetics. In: Techniques and Proce-
dures in Animal Production Research. American
Society of Animal Production, pp. 56-105 (1960)

Grossman, M.; Norton, H.W.: Simplication of the
sampling variance of the correlation coefficients.
Theor. Appl. Genet. 44, 332 (1974)

Received April 15, 1977
Communicated by L.D. Van Vleck

Henderson, C.R.: Estimation of variance and co-
variance components. Biometrics 9, 226-252
(1953)

Hocking, R.R.; Smith, W.B.: Generation of random
samples from a Wishart distribution. Technical
Report No. 6, Institute of Statistics, Texax A &

M University, College Station, Texas (1967)

Mood, A.M.; Graybill, F.A.; Boes, D.C.: Intro-
duction to the theory of statistics. New York:
McGraw Hill 1974

Reeve, E.C.R.: The variance of the genetic corre-
lation coefficient. Biometrics 11, 357-374 (1955)

Robertson, A.: The sampling variance of the genetic
correlation coefficient. Biometrics 15, 469-485
(1959)

Rodda, D.D.: Quantitative genetics of egg composi-
tion. Ph.D. thesis, University of Guelph, Guelph,
Ontario, Canada (1975)

Rodda, D.D.; Friars, G.W.; Gavora, J.S.; Mer-
ritt, E.S.: Quantitative genetics of egg compo-
sition. Br. Poult. Sci. {In press) (1977)

Searle, S.R.: Linear Models. New York: John Wiley
1971

Shook, G.E.; Barr, G.R.: Empirical sampling var-
iances of genetic correlations computed from sire
components of variance and covariance. J. Dairy
Sci. 61, 959 (abstract) (1968)

Tallis, G.M.: Sampling errors of genetic correla-
tion coefficients calculated from the analyses of
variance and covariance. Aust. J. Statist. 1,
35-43 {1959) -

Van Vleck, L.D.; Henderson, C.R.: Empirical sam-
pling estimates of genetic correlations. Biome-
trics 17, 359-371 (1961)

Dr. D.D. Rodda
Scorrier, Redruth
Cornwall, TR15 5BT
United Kingdom

Dr. L.R. Schaeffer and Dr. G.W. Friars
Department of Animal and Poultry Science
Dr. K. Mullen

Department of Mathematics and Statistics
University of Guelph



